Predictive Value of Blood Glucose as an Independent Risk factor for Progression/ Mortality in Acute Coronary Syndrome.

Ahmed Bilal* Gazanfar Ali Sindhu* Fraz Saeed Qureshi* Javed Iqbal*

ABSTRACT
OBJECTIVES:
This study was designed to assess the prognostic significance of hyperglycemia in Acute Coronary Syndromes.

BACKGROUND:
Most studies that have examined this fact before were performed in patient with Acute Myocardial Infarction. [4, 18]

METHODS:
There were 320 patients admitted in M.U.III, Allied Hospital, Faisalabad between July2006 and December 2006. Patients were divided according to history of Diabetes Mellitus and further according to whether they had blood glucose more than 198 mg/dl. Other cardiac risk factors, medications and interventions were analyzed and multivariate logistic regression was used to determine the influence of blood glucose on progression/ Mortality. About 122 patients were lost in follow up and 198 patients were followed for 2 months.

RESULTS:
In patients without history of diabetes, glucose levels were ≤198mg/dl in 136 patients (Group 1) and > 198 mg/dl in 24 patients (Group 2). of those with diabetes glucose levels were ≤198 mg/dl in 11 patients (Group 3) and > 198 mg/dl in 27 patients (Group 4). Compare with Group 1 patients, the odds ratios (95% confidence interval) for in hospital progression/mortality among those in Group 2, 3 and 4 were 2.64 (1.32 to 4.52; p = .001), 1.63 (98 to 3.52; p = .035), and 1.88 (1.29 to 3.45; p = .012), respectively. These groups also have greater 2 months progression/mortality.

CONCLUSION:
Hyperglycemia in ACS is associated with worse prognosis in patients without diabetes. This finding signifies the underlying need for aggressive glucose management in these situations and perhaps more vigorous screening strategy for early recognition of diabetes. Diagnosis of diabetes, was an independent predictor of in-hospital and 2 month morbidity and mortality. [9,24,36]

METHODS
Setting and Study Population: Allied Hospital, Punjab Medical College is a tertiary care hospital with 1500 beds and all state of the art modern facilities. Implications of elevated blood glucose were studies in 300 patient admitted to M.U. III during July,

INTRODUCTION
Diabetes Mellitus is now called a cardiovascular disease. [8,15,34] It is a major cardiovascular risk factor that has resulted in increase in prevalence of coronary artery disease[3,8,10]. Many cardiovascular risk factors are grouped in patients of diabetes mellitus and they are at increased risk of worse outcome during a period of unstability. [13,22] Patients with diabetes mellitus also have insulin resistance which is associated
with increased endothelial dysfunction and procoagulability state. [4,17] Patients either with or without a prior history of diabetes mellitus may present with hyperglycemia during ACS. [2,18,13] Among patients with no prior history of diabetes, hyperglycemia may reflect previously undiagnosed diabetes, pre-existing glucose intolerance, stress-glucose intolerance, or a combination of these[1,6]. Several studies have reported an association between elevated blood glucose upon admission and subsequent increased adverse events, including CHF, cardiogenic shock, progression from Unstable Angina to Non ST elevation MI and from Non ST elevation MI to ST elevation MI and death. [11,31] However, an overview of these reports was critical of the varying definitions for hyperglycemia (blood sugars ranged from 119 mg/dl (6.6 mmol/l) to 200 mg/dl (11.1 mmol/l) and of the poor assessment of patient variables, previous medical therapy, and in-hospital interventions [5,33]. Many of these patient are admitted to Medical wards and sometimes overlooked due to complete rely on conventional risk factors. [3,8,37] This study was designed to know whether hyperglycemia on admission, irrespective of the2006 to December, 2006. All patients admitted carrying the diagnosis of Acute Coronary Syndrome (ACS) were included and studied for during hospital stay and for 2 Months of follow-up. Blood glucose test was carried out in all patients at admission and at discharge. All risk factors and medications were stratified and standardized. Patients were divided in 4 groups generally i.e. Group 1 without history of diabetes and blood glucose ≤198 mg/dl. Group 2 without history of diabetes but blood glucose more than 198 mg/dl. Group 3 with history of diabetes but blood glucose ≤198 mg/dl. Group 4 with history of diabetes and blood glucose more than 198mg/dl. All of these patients were closely studied during there stay at hospital. Patients with Unstable angina (USA) were labeled on conventional basis and those of Non ST elevation Myocardial infarction who have raised cardiac enzymes but without specific ECG changes for ST elevation MI. Patients who progressed from USA to NSTEMI and from NSTEMI to STMI or who died were considered as primary end point. There record was kept in specifically designed performas. All diagnosis types (including most responsible diagnosis, primary diagnosis, secondary diagnoses, and complications) were kept in record to ensure sensitivity.

DATE COLLECTION

All data was collected by authors and other specifically assigned doctors of our ward on specially made performas both during in hospital stay and during follow up visits in out patient department. Data pertaining to hospital admission, blood glucose on admission, admission medication, co morbid illness, treatment in hospital, discharge medication, results of investigations and out come were collected.

DATA QUALITY CONTROL

Quality control was achieved by rechecking and matching of data by different personals and standardization of terminology. Maximum efforts were made to maintain telephonic contact with patients and causalities were confirmed by charts and death certificates. Patients who were lost in follow up were not included in final assessment.

DATA ANALYSIS

Hyperglycemia was defined in study as a random blood glucose at admission that was >198 mg/dl as per the 2002 guidelines of the American Diabetic Association. Patients were stratified into four groups, based on their history of diabetes mellitus and the blood glucose level at admission:

- Group 1: No previous history of diabetes and random blood sugar ≤198 mg/dl;
- Group 2: No previous history of diabetes and random blood sugar >198 mg/dl;
- Group 3: Known diabetes and random blood sugar ≤198 mg/dl;
- Group 4: Known diabetes and random blood sugar >198 mg/dl.

Study was an observational study and the data was collected as simple descriptive statistics. Chi square test was used to assess the difference in the distribution of categorical variables; t tests were used to compare the continuous variables. Multivariate analysis was done look for the independent predictors of in hospital and follow up progression and mortality. Variables those remained significant at p < .05 were included in final analysis. Strength of association of glycemic control was assessed by comparison of the three groups with disordered blood glucose profile (Group 2,3 & 4) to normal (Group 1) patients without previous diagnosis of diabetes and random blood glucose ≤ 198mg/dl.

RESULTS
198 patients were admitted and followed for 2 months in Medical Unit-III. 141 (71.21%) patients were admitted with diagnosis of USA and 57 (28.79%) with diagnosis of NSTEMI. In hospital progression/mortality rate was 14.8% for patients with USA and 13.9% for patients with NSTEMI. Cumulative progression/mortality was 19.6% for USA and 16.5% for NSTEMI, respectively.

80.8% of study population did not have history of diabetes. The normal (reference) cohort made 68.9% of the study population. Patients who were not diabetic but were hyperglycemic at time of admission were 12.1% of the study population. Patients with known diabetes and normal blood glucose on admission were 5.5% of total while patients who were diabetic and had blood glucose levels more than 198 mg/dl were 13.6% of total study population. Characteristics of patient divided in four groups are given below

Table I
Patient Characteristics According to Diagnosis of Diabetes and Glycemic Status

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group 1(^1) (n = 136)</th>
<th>Group 2(^2) (n = 24)</th>
<th>Group 3(^3) (n = 11)</th>
<th>Group 4(^4) (n = 27)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>57.6</td>
<td>62.8</td>
<td>61.5</td>
<td>61.1</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Male (%)</td>
<td>63.4</td>
<td>50.1</td>
<td>63.6</td>
<td>57.6</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Glucose (mg/dl)</td>
<td>130</td>
<td>326</td>
<td>158</td>
<td>316</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Creatinine (mg/dl)</td>
<td>1.06</td>
<td>1.13</td>
<td>1.09</td>
<td>1.03</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Smoker (%)</td>
<td>68.8</td>
<td>51.3</td>
<td>65.3</td>
<td>53.9</td>
<td>0.0112</td>
</tr>
<tr>
<td>Hypertension (%)</td>
<td>39.4</td>
<td>46.5</td>
<td>64.6</td>
<td>62.9</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Hyperlipidemia (%)</td>
<td>26.9</td>
<td>18.2</td>
<td>36.1</td>
<td>40.9</td>
<td>0.0013</td>
</tr>
<tr>
<td>Prior myocardial infarction (%)</td>
<td>12.8</td>
<td>26.3</td>
<td>31.6</td>
<td>36.9</td>
<td>0.0028</td>
</tr>
<tr>
<td>Prior heart failure (%)</td>
<td>4.6</td>
<td>19.6</td>
<td>16.8</td>
<td>26.2</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>PVD (%)</td>
<td>2.6</td>
<td>1.9</td>
<td>3.4</td>
<td>8.9</td>
<td>0.0647</td>
</tr>
</tbody>
</table>

Group 1 = No previous diagnosis of diabetes and mg/dl (11 mmol/l).
Group 2 = No previous diagnosis of diabetes and random blood glucose >198 mg/dl.
Group 3 = Known diabetes and random blood glucose ≤198 mg/dl.

80.8% of study population did not have history of diabetes. The normal (reference) cohort made 68.9% of the study population. Patients who were not diabetic but were hyperglycemic at time of admission were 12.1% of the study population. Patients with known diabetes and normal blood glucose on admission were 5.5% of total while patients who were diabetic and had blood glucose levels more than 198 mg/dl were 13.6% of total study population. Characteristics of patient divided in four groups are given below

Table I
Patient Characteristics According to Diagnosis of Diabetes and Glycemic Status

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group 1(^1) (n = 136)</th>
<th>Group 2(^2) (n = 24)</th>
<th>Group 3(^3) (n = 11)</th>
<th>Group 4(^4) (n = 27)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>57.6</td>
<td>62.8</td>
<td>61.5</td>
<td>61.1</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Male (%)</td>
<td>63.4</td>
<td>50.1</td>
<td>63.6</td>
<td>57.6</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Glucose (mg/dl)</td>
<td>130</td>
<td>326</td>
<td>158</td>
<td>316</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Creatinine (mg/dl)</td>
<td>1.06</td>
<td>1.13</td>
<td>1.09</td>
<td>1.03</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Smoker (%)</td>
<td>68.8</td>
<td>51.3</td>
<td>65.3</td>
<td>53.9</td>
<td>0.0112</td>
</tr>
<tr>
<td>Hypertension (%)</td>
<td>39.4</td>
<td>46.5</td>
<td>64.6</td>
<td>62.9</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Hyperlipidemia (%)</td>
<td>26.9</td>
<td>18.2</td>
<td>36.1</td>
<td>40.9</td>
<td>0.0013</td>
</tr>
<tr>
<td>Prior myocardial infarction (%)</td>
<td>12.8</td>
<td>26.3</td>
<td>31.6</td>
<td>36.9</td>
<td>0.0028</td>
</tr>
<tr>
<td>Prior heart failure (%)</td>
<td>4.6</td>
<td>19.6</td>
<td>16.8</td>
<td>26.2</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>PVD (%)</td>
<td>2.6</td>
<td>1.9</td>
<td>3.4</td>
<td>8.9</td>
<td>0.0647</td>
</tr>
</tbody>
</table>

Group 1 = No previous diagnosis of diabetes and mg/dl (11 mmol/l).
Group 2 = No previous diagnosis of diabetes and random blood glucose >198 mg/dl.
Group 3 = Known diabetes and random blood glucose ≤198 mg/dl.

Patients known to have diabetes were significantly older than "normals," yet the oldest group of patients had hyperglycemia but no known history of diabetes. Males made up almost 63% of the normal-glucose non-diabetic group, but only half of the non-diabetic hyperglycemic group. Other major cardiac risk factors had a variable distribution. Patient group with known diabetes was having greater likelihood of having previous myocardial infarction irrespective of the glucose level.

Admission medication are given below in the table. In general patients with diabetes were more likely to have received intensive cardiovascular therapy with all available options including aspirin, beta-blockers, angiotensin-converting enzyme inhibitors, and hydroxymethylglutaryl-coenzyme A reductase inhibitors. Conversely patients having hyperglycemia but not diabetes did receive less aggressive cardiovascular therapy on presentation.

Table II
Admission Medication According to Diagnosis of Diabetes and Glycemic Status

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group 1(^1) (n = 136)</th>
<th>Group 2(^2) (n = 24)</th>
<th>Group 3(^3) (n = 11)</th>
<th>Group 4(^4) (n = 27)</th>
<th>p Value</th>
</tr>
</thead>
</table>
| ACEI = angiotensin-converting enzyme inhibitor; ARB = angiotensin receptor blocker; CCB = calcium channel blocker; HMG CoA = hydroxymethylglutaryl-coenzyme A reductase inhibitor. Group 1 = No previous diagnosis of diabetes and random blood glucose ≤198 mg/dl (11 mmol/L). Group 2 = No previous diagnosis of diabetes and random blood glucose >198 mg/dl. Group 3 = Known diabetes and random blood glucose ≤198 mg/dl. Group 4 = Known diabetes and random blood glucose >198 mg/dl. Multivariate analysis identified several variables that were independently associated with in-hospital mortality. Diabetic status, irrespective of glucose level upon admission, was a predictor of adverse outcome; but patients with hyperglycemia and no history of diabetes had an even worse outcome, with more than a twofold higher risk. Patients known to have diabetes and those with hyperglycemia without a history of diabetes continued to suffer a relatively worse outcome even up to one year. Variables associated with lower in-hospital mortality include exposure to disease-
modifying drugs known to be associated with long-term benefit.

Table IV

Independent Predictors of Outcome

<table>
<thead>
<tr>
<th>Variable</th>
<th>Odds Ratio</th>
<th>95% CI</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>1.00</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Group 2</td>
<td>2.64</td>
<td>1.32-4.52</td>
<td>0.001</td>
</tr>
<tr>
<td>Group 3</td>
<td>1.63</td>
<td>0.98-3.52</td>
<td>0.035</td>
</tr>
<tr>
<td>Group 4</td>
<td>1.88</td>
<td>1.29-3.45</td>
<td>0.012</td>
</tr>
<tr>
<td>Peripheral vascular disease</td>
<td>4.33</td>
<td>1.88-9.96</td>
<td>0.0006</td>
</tr>
<tr>
<td>Insulin on admission</td>
<td>2.05</td>
<td>1.07-3.92</td>
<td>0.0299</td>
</tr>
<tr>
<td>Prior heart failure</td>
<td>1.81</td>
<td>1.09-3.00</td>
<td>0.0219</td>
</tr>
<tr>
<td>Prior myocardial infarction</td>
<td>1.95</td>
<td>1.28-2.98</td>
<td>0.0020</td>
</tr>
<tr>
<td>Female</td>
<td>1.66</td>
<td>1.31-2.43</td>
<td>0.0096</td>
</tr>
<tr>
<td>Aspirin on admission</td>
<td>0.53</td>
<td>0.33-0.86</td>
<td>0.0101</td>
</tr>
<tr>
<td>ACEI on admission</td>
<td>0.46</td>
<td>0.26-0.79</td>
<td>0.0052</td>
</tr>
<tr>
<td>Beta blocker on admission</td>
<td>0.25</td>
<td>0.14-0.44</td>
<td><0.0001</td>
</tr>
<tr>
<td>Digoxin on admission</td>
<td>0.13</td>
<td>0.04-0.47</td>
<td>0.0018</td>
</tr>
<tr>
<td>HMG CoA on admission</td>
<td>0.06</td>
<td>0.01-0.46</td>
<td>0.0067</td>
</tr>
</tbody>
</table>

ACEI = Angiotensin-converting enzyme inhibitor; CI = confidence interval; HMG CoA = hydroxymethylglutaryl-coenzyme A reductase inhibitor.

* Group 1 = No previous diagnosis of diabetes and random blood glucose ≤198 mg/dl (11 mmol/l).
* Group 2 = No previous diagnosis of diabetes and random blood glucose >198 mg/dl.
* Group 3 = Known diabetes and random blood glucose ≥198 mg/dl.
* Group 4 = Known diabetes and random blood glucose >198 mg/dl.

DISCUSSION

It is evident from the study that patients presenting with ACS who are hyperglycemic on admission represent a high-risk population. The worst outcomes occurred among those without a prior history of diabetes. This may relate to hyperglycemia being associated with several high-risk features, including older age, female gender, and a prior history of heart failure. However, an elevated blood sugar upon admission was correlated with more in-hospital heart failure and greater in-hospital and one-year mortality independent of a history of diabetes mellitus or of any of the high-risk features listed earlier. Furthermore, hyperglycemia conferred risk independent of body mass index or history of hyperlipidemia, suggesting that glucose status itself may be contributing to, or is a key marker of, adverse outcome.

STRESS HYPERGLYCEMIA

In literature it is unclear whether stress hyperglycemia directly predisposes patient to worse prognosis or it is just a marker of poor outcome. [30, 38] Although it is not clear but studies suggest that an elevated blood glucose level, whether acute or chronic, adversely affects endothelium-dependent vasodilation and impairs macrophage and lymphocyte function. [12,16,21] Hyperglycemia during ACS may reflect a compromised metabolic state and is associated with a surge of serum catecholamines and decreased insulin sensitivity. [19,26,32]

If stress hyperglycemia indeed reflects an underlying dysglycemic state, then this would be expected to correlate with a higher overall risk for more extensive coronary artery disease and would explain a worse prognosis after ACS.[20,35] Elevated blood glucose reflects both acute stress and predict an increased propensity for long term cardiovascular events. [23,25,29]

HYPERGLYCEMIA AND UNRECOGNIZED DIABETES MELLITUS

Hyperglycemia in non-diabetic patients most likely represents undiagnosed diabetes. 12.1% of population in this study which have hyperglycemia but no prior history of diabetes mellitus mostly represent this fact. [14,20,27] This percentage is greater than
international values showing lack of public health awareness and lack of adequate facilities.

Many of these patients had proved to be diabetics or having impaired glucose tolerance in follow up but this was not an universal finding. In this study this population had worse prognosis even than patients with know diabetes and hyperglycemia. This probably can be explained by that these patients were actually diabetic for many years but did not received any treatment which could confer a protective benefit. In comparison diabetics although not controlled at time of admission but were receiving some kind of treatment which decreased the morbidity and mortality.

STUDY LIMITATIONS

This was an observational study and it was not randomized. The true incidence of population presenting with Ischemic heart Disease and have first time recognized hyperglycemia cannot be established by this small study.

CONCLUSIONS

Hyperglycemia at time of admission in patients with ACS irrespective whether they are diabetic or not is associated with worse outcome at least in a subgroup of patients. These patients are older have multiple cardiac risk factors, and are more likely to have a prior history of heart failure. These patients are at high risk of progression of disease in hospital and after discharge and at 2 month of follow up even with intensive therapy.

It is probably suggested that all population should have a screening program to detect this population and early intervention with lifestyle modification and medical treatment can decrease morbidity and mortality. It is also evident that patients who have raised blood glucose level at admission need more extensive and aggressive strategies.

REFERENCES:

36. Yudkin JS, Oswald GA. Determinant of hospital admission and case fatality in diabetic patients

EDITORIAL COMMENTS

Patients who present with ACS and are hyperglycemia upon admission, represent a high risk population. This is an observational study of prognostic significance. The objective is well set and the sample of patients is adequate.

Statistical analysis of the data has been done by using applicable tests, and the results are adequately interpreted.

There is good utilization of tables at various stages, with proper grouping of patients. References have been quoted correctly, with use of some recent references as well.

Dr. Abdul Hafeez Chaudhary
Professor of Medicine
Incharge Medical Unit-I, Allied Hospital (PMC), Faisalabad.

AUTHORS

- Prof. Dr. Ahmed Bilal
 Professor of Medicine
 Incharge Medical Unit-III Allied Hospital Faisalabad

- Dr. Gazanfar Ali Sindhu
 Senior Registrar
 Medical Unit-III, Allied Hospital Faisalabad

- Dr. Fraz Saeed Qureshi
 Senior Registrar
 Medical Unit-III, Allied Hospital Faisalabad

- Dr. Javed Iqbal
 Medical Officer, Medical Unit-III
 Allied Hospital Faisalabad